DEPARTMENT of ENVIRONMENTAL SERVICES Water Supply & Pollution Control Division - Biology Bureau

LAKE TROPHIC DATA

MORPHOMETRIC:

Lake: GUINEA POND	Lake Area (ha):	4.05
Town: SANDWICH	Maximum depth (m):	6.5
County: Carroll	Mean depth (m):	1.7
River Basin: Merrimack	Volume (m³):	69500
Latitude: 43°51'38" N	Relative depth:	2.8
Longitude: 71°29'24" W	Shore configuration:	1.07
Elevation (ft): 1435	Areal water load (m/yr):	44.49
Shore length (m): 760	Flushing rate (yr^{-1}) :	25.90
Watershed area (ha): 283.5	P retention coeff.:	0.38
<pre>% watershed ponded: 1.1</pre>	Lake type: natural	w/dam

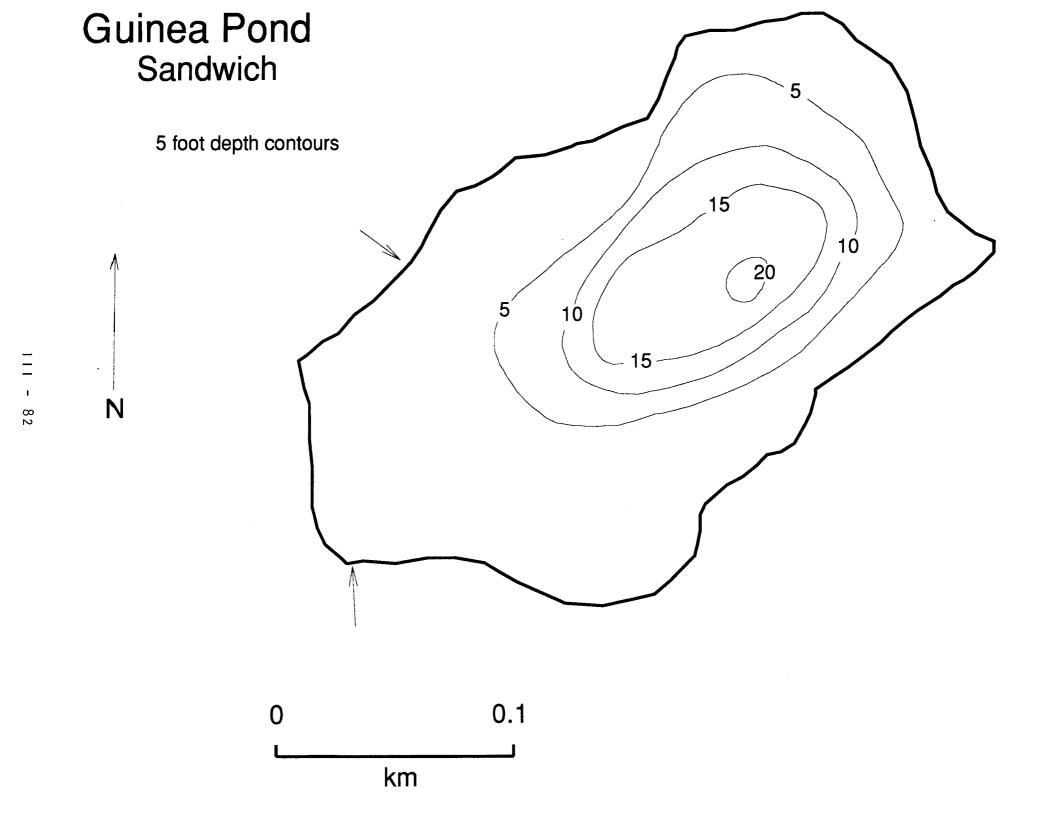
BIOLOGICAL:	29 January 1996	30 August 1995
DOM. PHYTOPLANKTON (% TOTAL) #1	ASTERIONELLA 75%	CHRYSOSPHAERELLA 50%
#2	DINOBRYON 15%	PERIDINIUM 25%
#3		DINOBRYON 20%
PHYTOPLANKTON ABUNDANCE (units/mL)		
CHLOROPHYLL-A (µg/L)		11.26
DOM. ZOOPLANKTON (% TOTAL) #1	SYNCHAETA 50%	KERATELLA 44%
#2	KERATELLA 33%	NAUPLIUS LARVA 28%
#3		CYCLOPOID COPEPOD 10%
ROTIFERS/LITER	103	774
MICROCRUSTACEA/LITER	2	623
ZOOPLANKTON ABUNDANCE (#/L)	108	1397
VASCULAR PLANT ABUNDANCE		Abundant
SECCHI DISK TRANSPARENCY (m)		2.5
BOTTOM DISSOLVED OXYGEN (mg/L)	0.5	0.0
BACTERIA (E. coli, #/100 ml) #1		2
#2		
#3		
BOTTOM DISSOLVED OXYGEN (mg/L) BACTERIA (E. coli, #/100 ml) #1 #2	0.5	0.0

SUMMER THERMAL STRATIFICATION:

stratified

Depth of thermocline (m): 4.6
Hypolimnion volume (m³): 875
Anoxic volume (m³): 6225

CHEMICAL:			GUINEA PO SANDWICH	OND	
	29 January 1996		30 August 1995		
DEPTH (m)	2.0	4.0	2.0		4.0
pH (units)	5.0	5.2	6.0	-	5.7
A.N.C. (Alkalinity)	0.2	0.2	1.6		1.9
NITRATE NITROGEN	0.12	0.12	< 0.10		< 0.10
TOTAL KJELDAHL NITROGEN	0.29	0.26	0.47		0.58
TOTAL PHOSPHORUS	0.007	0.013	0.013		0.019
CONDUCTIVITY (µmhos/cm)	20.8	21.0	18.4		19.7
APPARENT COLOR (cpu)	45	45	48		55
MAGNESIUM			0.23		
CALCIUM			1.8		
SODIUM			< 1.0		
POTASSIUM			< 0.40		
CHLORIDE	2	2	2		2
SULFATE			3		3
TN : TP	59	29	36		31
CALCITE SATURATION INDEX			4.8	Car de a constant de la constant de	


All results in mg/L unless indicated otherwise

TROPHIC CLASSIFICATION: 1995

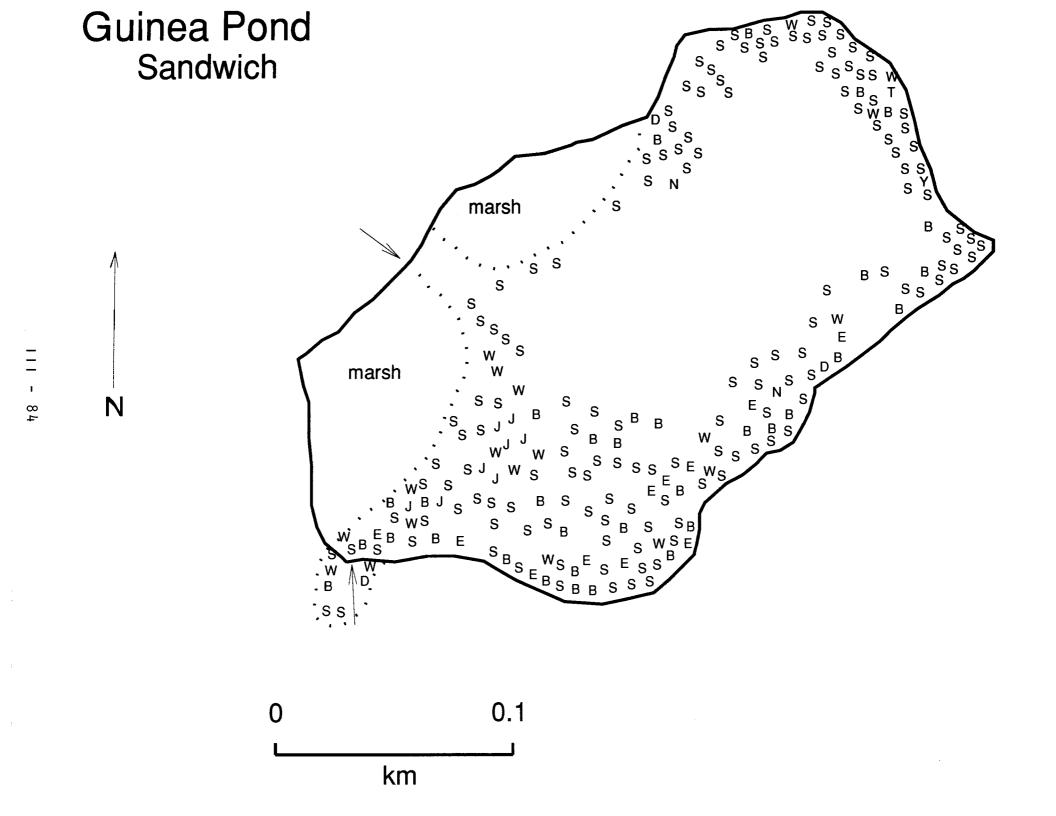
D.O.	S.D.	PLANT	CHL	TOTAL	CLASS
4	3	5	2	14	Eutro.

COMMENTS:

- 1. This is a remote marshy pond sampled cooperatively with the Fish and Game Department.
- 2. The pond has been sampled sporadically in the spring as part of Fish and Game's helicopter stocking program.
- 3. This pond is an example of a remote, somewhat acid pond that is eutrophic and probably naturally acidic. It has tea-colored water, abundant macrophyte growth and no dissolved oxygen below the epilimnion. Both phytoplankton and zooplankton were abundant.

FIELD DATA SHEET

LAKE: GUINEA POND TOWN: SANDWICH DATE: 08/30/95 WEATHER: SUNNY & BREEZY


DRIE: 00/30/33	W 111111	BIC BOWN & BREEZE	
DEPTH (M)	TEMP (°C)	*DISSOLVED OXYGEN	OXYGEN SATURATION
0.1	19.0	8.2	88 %
1.0	19.0	8.0	86 %
2.0	18.0	7.2	76 %
3.0	17.1	5.5	56 %
4.0	15.0	0.0	0 %
5.0	12.0	0.0	0 %
6.0	11.0	0.0	0 %
4.040.040.00			
Annual Service Control of Control			

SECCHI DISK (m): 2.5 COMMENTS:

BOTTOM DEPTH (m): 6.5

TIME: 1130

*Dissolved oxygen values are in mg/L

AQUATIC PLANT SURVEY

LAK	E: GUINEA POND	TOWN: SANDWICH	DATE: 08/30/95	
	ABUNDANCE			
Key	GENERIC	COMMON		
S	Sparganium	Bur reed	Common	
В	Brasenia schreberi	Water shield	Scattered	
N	Nymphaea	White water lily	Sparse	
E	Eriocaulon septangulare	Pipewort	Scattered	
W	Potamogeton	Pondweed	Sparse	
D	Decodon verticillatus	Swamp loosestrife	Sparse	
J	Juncus	Rush	Sparse	
Y	Nuphar	Yellow water lily	Sparse	
	Utricularia	Bladderwort	Abundant	
 		Sterile thread-like leaf	Abundant	
				
 -				
 				
ļ ———				
 				
 				
 				
-				
 				
-				
-				
-	_1	OVERALL ABUNDANCE	: Abundant	
11		OTHER INDUITIES	• •••	

GENERAL OBSERVATIONS:

- 1. Bladderwort and non-flowering thread-like leaves were abundant over the entire bottom. They are not depicted on the map.
- 2. Filamentous algae was along the bottom in the outlet area.
- 3. The western and southwestern shores, including the inlet and outlet areas, were marsh areas.